Regenerative brake

A regenerative brake is an energy recovery mechanism which slows a vehicle or object down by converting its kinetic energy into another form, which can be either used immediately or stored until needed. This contrasts with conventional braking systems, where the excess kinetic energy is converted to heat by friction in the brake linings and therefore wasted.

The most common form of regenerative brake involves using an electric motor as an electric generator. In electric railways the generated electricity is fed back into the supply system, whereas in battery electric and hybrid electric vehicles, the energy is stored in a battery or bank of capacitors for later use. Energy may also be stored mechanically via pneumatics, hydraulics or the kinetic energy of a rotating flywheel.

Contents

The motor as a generator

Vehicles driven by electric motors use the motor as a generator when using regenerative braking: it is operated as a generator during braking and its output is supplied to an electrical load; the transfer of energy to the load provides the braking effect.

Regenerative braking is used on hybrid gas/electric automobiles to recoup some of the energy lost during stopping. This energy is saved in a storage battery and used later to power the motor whenever the car is in electric mode.[1]

Early examples of this system were the front-wheel drive conversions of horse-drawn cabs by Louis Antoine Krieger (1868–1951). The Krieger electric landaulet had a drive motor in each front wheel with a second set of parallel windings (bifilar coil) for regenerative braking.[2] In England, the Raworth system of "regenerative control" was introduced by tramway operators in the early 1900s, since it offered them economic and operational benefits as explained by A. Raworth of Leeds in some detail.[3][4][5] These included tramway systems at Devonport (1903), Rawtenstall, Birmingham, Crystal Palace-Croydon (1906) and many others. Slowing down the speed of the cars or keeping it in hand on descending gradients, the motors worked as generators and braked the vehicles. The tram cars also had wheel brakes and track slipper brakes which could stop the tram should the electric braking systems fail. In several cases the tram car motors were shunt wound instead of series wound, and the systems on the Crystal Palace line utilized series-parallel controllers.[6] Following a serious accident at Rawtenstall, an embargo was placed on this form of traction in 1911. Twenty years later, the regenerative braking system was reintroduced.[5]

Regenerative braking has been in extensive use on railways for many decades. The Baku-Tbilisi-Batumi railway (Transcaucasian railway or Georgian railway) started utilizing regenerative braking in the early 1930s. This was especially effective on the steep and dangerous Surami Pass.[7] In Scandinavia the Kiruna to Narvik railway carries iron ore from the mines in Kiruna in the north of Sweden down to the port of Narvik in Norway to this day. The rail cars are full of thousands of tons of iron ore on the way down to Narvik, and these trains generate large amounts of electricity by their regenerative braking. From Riksgränsen on the national border to the Port of Narvik, the trains use only a fifth of the power they regenerate. The regenerated energy is sufficient to power the empty trains back up to the national border.[8] Any excess energy from the railway is pumped into the power grid to supply homes and businesses in the region, and the railway is a net generator of electricity.

An Energy Regeneration Brake was developed in 1967 for the AMC Amitron.[9] This was a completely battery powered urban concept car whose batteries were recharged by regenerative braking, thus increasing the range of the automobile.[10]

Many modern hybrid and electric vehicles use this technique to extend the range of the battery pack. Examples include the Toyota Prius, Honda Insight, the Vectrix electric maxi-scooter, the Tesla Roadster, and the Chevrolet Volt.

Limitations

Traditional friction-based braking is used in conjunction with mechanical regenerative braking for the following reasons:

For these reasons there is typically the need to control the regenerative braking and match the friction and regenerative braking to produce the desired total braking output. The GM EV-1 was the first commercial car to do this. Engineers Abraham Farag and Loren Majersik were issued two patents for this brake-by-wire technology.[11][12]

Electric railway vehicle operation

During braking, the traction motor connections are altered to turn them into electrical generators. The motor fields are connected across the main traction generator (MG) and the motor armatures are connected across the load. The MG now excites the motor fields. The rolling locomotive or multiple unit wheels turn the motor armatures, and the motors act as generators, either sending the generated current through onboard resistors (dynamic braking) or back into the supply (regenerative braking).

For a given direction of travel, current flow through the motor armatures during braking will be opposite to that during motoring. Therefore, the motor exerts torque in a direction that is opposite from the rolling direction.

Braking effort is proportional to the product of the magnetic strength of the field windings, times that of the armature windings.

Savings of 17% are claimed for Virgin Trains Pendolinos.[13] There is also less wear on friction braking components. The Delhi Metro saved around 90,000 tons of carbon dioxide (CO2) from being released into the atmosphere by regenerating 112,500 megawatt hours of electricity through the use of regenerative braking systems between 2004 and 2007. It is expected that the Delhi Metro will save over 100,000 tons of CO2 from being emitted per year once its phase II is complete through the use of regenerative braking.[14]

Another form of simple, yet effective regenerative braking is used on the London Underground which is achieved by having small slopes leading up and down from stations. The train is slowed by the climb, and then leaves down a slope, so kinetic energy is converted to gravitational potential energy in the station.

Electricity generated by regenerative braking may be fed back into the traction power supply; either offset against other electrical demand on the network at that instant, or stored in lineside storage systems for later use.[15]

Comparison of dynamic and regenerative brakes

Dynamic brakes ("rheostatic brakes" in the UK), unlike regenerative brakes, dissipate the electric energy as heat by passing the current through large banks of variable resistors. Vehicles that use dynamic brakes include forklifts, Diesel-electric locomotives, and streetcars. This heat can be used to warm the vehicle interior, or dissipated externally by large radiator-like cowls to house the resistor banks.

The main disadvantage of regenerative brakes when compared with dynamic brakes is the need to closely match the generated current with the supply characteristics and increased maintenance cost of the lines. With DC supplies, this requires that the voltage be closely controlled. Only with the development of power electronics has this been possible with AC supplies, where the supply frequency must also be matched (this mainly applies to locomotives where an AC supply is rectified for DC motors).

A small number of mountain railways have used 3-phase power supplies and 3-phase induction motors. This results in a near constant speed for all trains as the motors rotate with the supply frequency both when motoring and braking.

Kinetic Energy Recovery Systems

Kinetic Energy Recovery Systems (KERS) were used for the motor sport Formula One's 2009 season, and are under development for road vehicles. KERS was abandoned for the 2010 Formula One season, but re-introduced for the 2011 season. As of the 2011 season, 9 teams are using KERS, with 3 teams having not used it so far in a race.[16] One of the main reasons that not all cars use KERS is because it adds an extra 25 kilograms of weight, while not adding to the total car weight, it does incur a penalty particularly seen in the qualifying rounds, as it raises the car's center of gravity, and reduces the amount of ballast that is available to balance the car so that it is more predictable when turning.[17] FIA rules also limit the exploitation of the system. The concept of transferring the vehicle’s kinetic energy using flywheel energy storage was postulated by physicist Richard Feynman in the 1950s and is exemplified in complex high end systems such as the Zytek, Flybrid,[18] Torotrak[19][20] and Xtrac used in F1 and simple, easily manufactured and integrated differential based systems such as the Cambridge Passenger/Commercial Vehicle Kinetic Energy Recovery System (CPC-KERS). [!Biased][21]

Xtrac and Flybrid are both licensees of Torotrak's technologies, which employ a small and sophisticated ancillary gearbox incorporating a continuously variable transmission (CVT). The CPC-KERS is similar as it also forms part of the driveline assembly. However, the whole mechanism including the flywheel sits entirely in the vehicle’s hub (looking like a drum brake). In the CPC-KERS, a differential replaces the CVT and transfers torque between the flywheel, drive wheel and road wheel.

Use in motor sport

History

The first of these systems to be revealed was the Flybrid This system weighs 24 kg and has an energy capacity of 400 kJ after allowing for internal losses. A maximum power boost of 60 kW (81.6 PS, 80.4 HP) for 6.67 seconds is available. The 240 mm diameter flywheel weighs 5.0 kg and revolves at up to 64,500 rpm. Maximum torque is 18 Nm (13.3 ftlbs). The system occupies a volume of 13 litres

Two minor incidents have been reported during testing of KERS systems in 2008. The first occurred when the Red Bull Racing team tested their KERS battery for the first time in July: it malfunctioned and caused a fire scare that led to the team's factory being evacuated.[22] The second was less than a week later when a BMW Sauber mechanic was given an electric shock when he touched Christian Klien's KERS-equipped car during a test at the Jerez circuit.[23]

FIA

Formula One have stated that they support responsible solutions to the world's environmental challenges,[24] and the FIA allowed the use of 81 hp (60 kW; 82 PS) KERS in the regulations for the 2009 Formula One season.[25] Teams began testing systems in 2008: energy can either be stored as mechanical energy (as in a flywheel) or as electrical energy (as in a battery or supercapacitor).[26]

With the introduction of KERS in the 2009 season, only four teams used it at some point in the season: Ferrari, Renault, BMW, and McLaren. Eventually, during the season, Renault and BMW stopped using the system. Vodafone McLaren Mercedes became the first team to win a F1 GP using a KERS equipped car when Lewis Hamilton won the Hungarian Grand Prix on July 26, 2009. Their second KERS equipped car finished fifth. At the following race, Lewis Hamilton became the first driver to take pole position with a KERS car, his team mate, Heikki Kovalainen qualifying second. This was also the first instance of an all KERS front row. On August 30, 2009, Kimi Räikkönen won the Belgian Grand Prix with his KERS equipped Ferrari. It was the first time that KERS contributed directly to a race victory, with second placed Giancarlo Fisichella claiming "Actually, I was quicker than Kimi. He only took me because of KERS at the beginning".[27]

Although KERS was still legal in F1 in the 2010 season, all the teams had agreed not to use it.[28] New rules for the 2011 F1 season which raised the minimum weight limit of the car and driver by 20 kg to 640 kg,[29] along with the FOTA teams agreeing to the use of KERS devices once more, meant that KERS returned for the 2011 season.[30] This is still optional as it was in the 2009 season; as of the 2011 season 3 teams have elected not to use it.[16] For the 2012 season, it is expected all teams will run using the system, with the exception of Marussia.

As of 2014, the power storage of the KERS units will increase from 60 kW to 120 kW. This will be to balance the sport's move from 2.4 litre V8 engines to 1.6 litre V6 engines.[31]

Autopart makers

Bosch Motorsport Service is developing a KERS for use in motor racing. These electricity storage systems for hybrid and engine functions include a lithium-ion battery with scalable capacity or a flywheel, a four to eight kilogram electric motor (with a maximum power level of 60 kW/80 hp), as well as the KERS controller for power and battery management. Bosch also offers a range of electric hybrid systems for commercial and light-duty applications.[32]

Carmakers

Automakers including Honda have been testing KERS systems.[33] At the 2008 1,000 km of Silverstone, Peugeot Sport unveiled the Peugeot 908 HY, a hybrid electric variant of the diesel 908, with KERS. Peugeot plans to campaign the car in the 2009 Le Mans Series season, although it will not be capable of scoring championship points.[34]

Vodafone McLaren Mercedes began testing of their KERS in September 2008 at the Jerez test track in preparation for the 2009 F1 season, although at that time it was not yet known if they would be operating an electrical or mechanical system.[35] In November 2008 it was announced that Freescale Semiconductor would collaborate with McLaren Electronic Systems to further develop its KERS for McLaren's Formula One car from 2010 onwards. Both parties believed this collaboration would improve McLaren's KERS system and help the system filter down to road car technology.[36]

Toyota has used a supercapacitor for regeneration on Supra HV-R hybrid race car that won the 24 Hours of Tokachi race in July 2007.[37]

Motorcycles

KTM racing boss Harald Bartol has revealed that the factory raced with a secret Kinetic Energy Recovery System (KERS) fitted to Tommy Koyama's motorcycle during the 2008 season-ending 125cc Valencian Grand Prix. This was illegal and against the rules, so they were later banned from doing it afterwards.[38]

Races

Automobile Club de l'Ouest, the organizer behind the annual 24 Hours of Le Mans event and the Le Mans Series is currently "studying specific rules for LMP1 that will be equipped with a kinetic energy recovery system. "[39] Peugeot was the first manufacturer to unveil a fully functioning LMP1 car in the form of the 908 HY at the 2008 Autosport 1000  km race at Silverstone.[40]

Use in compressed air cars

Regenerative brakes could be employed in compressed air cars to refill the air tank during braking.

See also

References

  1. ^ "About the hidden costs of frequency inverters". Kimo.de. http://kimo.de/index.php?file=anwend/kostenfu/PRO-Kosten-FU.html&lang=EN. Retrieved 2010-09-17. 
  2. ^ Dave (16 March 2009). "Horseless Carriage: 1906". Shorpy. http://www.shorpy.com/node/5734%23comment-58487. Retrieved 14 August 2010. 
  3. ^ Journal/Proceedings of the Institution of Electrical Engineers, Volume 38: 1906–1907 page 374-398. Institution of Electrical Engineers. 7 February 1907. http://books.google.com/books?id=wP5DAAAAYAAJ&pg=PA374&dq=proceedings+institute+electrical+engineers+1907+vol+38&hl=en&ei=8ytHTaSgIoG2sAP5tqWEAg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CC8Q6AEwAA#v=onepage&q&f=false. Retrieved 31 January 2011. 
  4. ^ Transactions of the American Institute of Electrical Engineers, Volume 36: 1917 page 68. American Institute of Electrical Engineers. 1917. http://books.google.com/books?id=ki4SAAAAIAAJ&pg=PA68&lpg=PA68&dq=%22raworth+system%22&source=bl&ots=0XJmoK2EZD&sig=FE_prbO7-twGtYtyih9lT9IyJes&hl=en&ei=MSJHTfazEIuusAOY3vzhAQ&sa=X&oi=book_result&ct=result&resnum=1&ved=0CBMQ6AEwAA#v=onepage&q=%22raworth%20system%22&f=false. Retrieved 31 January 2011. 
  5. ^ a b Straun Jno, T Robertson, John Markham (19 February 2007). "The Regenerative Braking Story: 2007". Venture Publications. http://www.ianallanpublishing.com/the-regenerative-braking-story.html. Retrieved 31 January 2011. 
  6. ^ Transport World The Tramway and Railway World Volume XX July–December: 1906 page 20. Carriers Publishing Company Limited. 1906. http://books.google.com/books?id=fjApAAAAYAAJ&pg=PA20&lpg=PA20&dq=%22raworth+system%22&source=bl&ots=kf_de1wU4G&sig=n9YCJtOK7XhBuv2wX9gEfgMDVNc&hl=en&ei=ZxtHTbvzO4zksQP64Z2PCg&sa=X&oi=book_result&ct=result&resnum=2&ved=0CBYQ6AEwAQ#v=onepage&q=%22raworth%20system%22&f=false. Retrieved 31 January 2011. 
  7. ^ Bigpanzer (30 April 2006). "Susrami Type Locomotoive at Surami Pass". Shorpy. http://forum.axishistory.com/viewtopic.php?f=34&t=91987&start=645. Retrieved 31 January 2011. 
  8. ^ "Iore". 30 January 2011. http://en.wikipedia.org/wiki/Iore. Retrieved 31 January 2011. 
  9. ^ Grahame, James (22 September 2008). "1968: AMC's Amazing Amitron Electric Car". Retro Thing: Vintage Gadgets and Technology. http://www.retrothing.com/2008/09/1968-amcs-amazi.html. Retrieved 14 August 2010. 
  10. ^ "Next: the Voltswagon?". Time. 22 December 1967. http://www.time.com/time/magazine/article/0,9171,899945,00.html. Retrieved 14 August 2010. 
  11. ^ GM patent 5775467Floating electromagnetic brake system.
  12. ^ GM patent 5603217Compliant master cylinder.
  13. ^ Roger Ford (July 2, 2007). "Regenerative braking boosts green credentials". Railway Gazette International. http://www.railwaygazette.com/news/single-view/view/regenerative-braking-boosts-green-credentials.html. Retrieved 2008-03-21. 
  14. ^ "Delhi Metro prevents 90,000 tons of CO2". India Times. 23 February 2009. http://economictimes.indiatimes.com/Earth/Delhi-Metro-Cuts-90000-tons-of-CO2/articleshow/4176147.cms. Retrieved 14 August 2010. 
  15. ^ "Railway Gazette: Flywheel firm launches". http://www.railwaygazette.com/nc/news/single-view/view/flywheel-firm-launches.html. Retrieved 2011-02-13. 
  16. ^ a b "Team Lotus, Virgin, HRT F1 to Start 2011 Without KERS". Autoevolution. 2011-01-28. http://www.autoevolution.com/news/team-lotus-virgin-hrt-f1-to-start-2011-without-kers-30389.html. Retrieved 2011-06-01. 
  17. ^ BBC TV commentary on German Grand Prix 2009
  18. ^ Flybrid Systems LLP (2010-09-10). "Flybrid Systems". Flybrid Systems. http://www.flybridsystems.com/Technology.html. Retrieved 2010-09-17. 
  19. ^ Torotrak
  20. ^ "Torotrak, Xtrac & CVT pdf" (PDF). http://www.xtrac.com/pdfs/Torotrak_Xtrac_CVT.pdf. Retrieved 2010-09-17. 
  21. ^ BHR Technology.. "Cpc-Kers". Bhr-technology.com. http://www.bhr-technology.com/CPC-KERS.pps. Retrieved 2010-09-17. 
  22. ^ "KERS failure caused Red Bull fire scare". autosport.com. 17 July 2008. http://www.autosport.com/news/report.php/id/69199. Retrieved 2008–07–22. 
  23. ^ "BMW mechanic escapes KERS scare". autosport.com. 22 July 2008. http://www.autosport.com/news/report.php/id/69391. Retrieved 2008-07-22. 
  24. ^ "Teams Comment on F1's Environmental Future". FIA. October 8, 2008. http://www.fia.com/en-GB/mediacentre/pressreleases/mobility/2008/Pages/f1_environment.aspx. Retrieved 2009-01-14. 
  25. ^ "2009 Formula One Technical Regulations" (PDF). FIA. December 22, 2006. http://www.fia.com/resources/documents/1151088479__2009_F1_TECHNICAL_REGULATIONS.pdf. Retrieved 2006-12-22. 
  26. ^ FIA management (December 22, 2006). "2009 FORMULA ONE TECHNICAL REGULATIONS" (PDF). FIA. http://www.fia.com/resources/documents/1151088479__2009_F1_TECHNICAL_REGULATIONS.pdf. Retrieved 2008-07-08. 
  27. ^ Whyatt, Chris (August 30, 2009). "Raikkonen wins exciting Spa duel". BBC. http://news.bbc.co.uk/sport1/hi/motorsport/formula_one/8229449.stm. Retrieved 2009-08-30. 
  28. ^ "Formula 1 - The Official F1 Website". Formula1.com. http://www.formula1.com/inside_f1/understanding_the_sport/8763.html. Retrieved 2010-08-14. 
  29. ^ "http://www.formula1.com/news/headlines/2010/12/11603.html". bbc.co.uk. http://www.formula1.com/news/headlines/2010/12/11603.html. Retrieved 2010-12-04. 
  30. ^ Benson, Andrew (23 June 2010). "Changes made to F1l". BBC. http://news.bbc.co.uk/sport2/hi/motorsport/formula_one/8756430.stm. Retrieved 23 June 2010. 
  31. ^ "Formula 1 delays introduction of ‘green’ engines until 2014". bbc.co.uk. 2011-06-29. http://news.bbc.co.uk/sport1/hi/formula_one/13878359.stm. Retrieved 2011-06-27. 
  32. ^ "Bosch Developing Modular KERS Systems for Range of Motorsport Applications". Green Car Congress. 2008–11–18. http://www.greencarcongress.com/2008/11/bosch-developin.html. Retrieved 2010–04–27. 
  33. ^ http://www.carmondo.de/blog/2008/07/03/honda-und-bmw-mit-formel-1-hybriden/
    This article incorporates information from the German Wikipedia.
  34. ^ "Peugeot Sport Hybrid". Racecar Engineering. 13 September 2008. http://www.racecar-engineering.com/news/people/273697/peugeot-reveal-hybrid-racer-for-2009.html. Retrieved 2008–09–13. 
  35. ^ Lawrence Butcher (2008-09-18). "F1 KERS; Mclaren on track with KERS | People". Racecar Engineering. http://www.racecar-engineering.com/news/people/274178/mclaren-on-track-with-kers.html. Retrieved 2010-08-14. 
  36. ^ McLaren to work with Freescale on KERS November 12, 2008
  37. ^ "Toyota Hybrid Race Car Wins Tokachi 24-Hour Race; In-Wheel Motors and Supercapacitors". Green Car Congress. 2007-07-17. http://www.greencarcongress.com/2007/07/toyota-hybrid-r.html. Retrieved 2010-09-17. 
  38. ^ "KTM beats F1 with secret KERS debut! | MotoGP News | Feb 2009". Crash.Net. 2009-02-04. http://www.crash.net/MotoGP/News/142605/1/ktm_beats_f1_with_secret_kers_debut.html. Retrieved 2010-08-14. 
  39. ^ "ACO Technical Regulations 2008 for Prototype "LM"P1 and "LM"P2 classes, page 3" (PDF). Automobile Club de l'Ouest (ACO). 20 December 2007. Archived from the original on 2008-06-25. http://web.archive.org/web/20080625190107/http://www.lemans.org/sport/sport/reglements/ressources/auto_2008/cdc_reglement_lmp_fr_gb_2008.pdf. Retrieved 2008-01-20. 
  40. ^ Sam Collins (2008-09-13). "Peugeot Sport Hybrid | People". Racecar Engineering. http://www.racecar-engineering.com/news/people/273697/peugeot-reveal-hybrid-racer-for-2009.html. Retrieved 2010-08-14.